Public Donation and Family Banking: Cord Blood Options

Joanie Y. Hare, MD
Joanne Kurtzberg, MD PROGRAM

DROR

BE 88 THE MATCH ${ }^{*}$

Learning Objectives

- State the rationale in counseling patients about cord blood options
- Differentiate between transplant medicine and regenerative medicine as it relates to umbilical cord blood
- Discover resources available for you, your organization, and ultimately your patients, about umbilical cord blood donation and storage BE 88 THE MATCH ${ }^{-}$

Joanie Y. Hare, MD

HRSA Advisory Counsel on Blood Stem Cell Transplantation
Member, ACBSCT
Cord Blood Association
Member, Board of Directors
M.D. Anderson Cord Blood Bank Minority Recruitment Committee

Obstetrical Liaison and Advisor
The Woman's Hospital of Texas
Medical Director Perinatal Diabetes Program
Medical Director of the Maternal Transport Program

Joanne Kurtzberg, MD

- Jerome Harris Distinguished Professor of Pediatrics \& Pathology
- Chief Scientific Officer and Medical Director, Robertson Clinical \& Translational Cell Therapy Program
- Director, Pediatric Blood \& Marrow Program
- Director, Carolinas Cord Blood Bank at Duke
 BE

THE MATCH ${ }^{*}$

Disclosures

The following planners and speakers have no financial disclosures.

Name	Role in activity
Joanie Hare, MD	Speaker
Nicole Heino	Planner
Del Steckler, RN, BSN, MMA	Nurse planner

Disclosures

The following planners and speakers have the following financial disclosures.

Name	Role	Disclosure
Joanne Kurtzberg, MD	Speaker	Gamida, Marcus, Robertson, Novartis

Grant made possible by
Cord Blood Registy ${ }^{\text {s }}$ through
the Newborn Possibilities Fund, administered by Tides Foundation

THE MATCH ${ }^{+}$

Counseling Patients is Key in Cord Blood Banking

Joanie Y. Hare, MD PROGRAM

What to Ask?

- Has the obstetrician (OB) discussed cord blood options?
- Patients seek credibility/endorsement from their OB
- Nurse can reinforce discussion
- Nurse can support mom's decision
- Nurse can answer questions

What is Cord Blood?

- Cord blood is the blood that remains in the umbilical cord and placenta and can be collected once the cord is clamped and cut
- Cord blood contains hematopoietic cells like those found in bone marrow

BE 8 THE MATCH ${ }^{*}$

Cord Blood Preservation Options

Public and Family Banking

Public Donation

- Cord blood unit (CBU) belongs to public cord blood bank
- Used for any child/adult in need
- No cost to donate
- HLA typed prior to registry listing
- Highest cell count CBUs are processed/stored

Family Banking

- CBU belongs to family
- Most directed allogeneic/ autologous use in children
- Storage/processing fee
- HLA typed when needed
- Most CBUs stored for:
- traditional use
- future use in new areas
- regenerative medicine

NATIONAL
Marrow DONOR PROGRAM

BE 82 THE MATCH

What Information Should I Provide?

Public Donation

Family Banking

- Health assessment prior to donation
- Cord blood bank initiates and complies with FDA regulation
- Singleton birth
- > 34 weeks gestation
- Defined accredited delivery location, unless a kit collection
- Limited kit donations
- Health assessment with enrollment
- Singleton/multiple births
- Any delivery location
- Payment options available to make affordable for all families

Sibling in Need

CBUs can be saved for a sibling, and in some cases a parent, with medical need

- Sibling-directed donation offered at little/no cost to eligible families
- Parents need to have conversation with sibling's physician
- Parents need to contact participating public cord blood bank or family bank
- Another option

Newborn Possibilities Program http://www.cordblood.com/benefits-cord-blood/family-cord-bloods

Do Nothing

- In many areas, public cord blood donation is not available
- Parents may decide that neither public donation nor family banking is right for them
- If not collected, discarded as medical waste
- Provide support for family's decision

Benefits of Cord Blood

Public Donation

- Only 30% of patients have family match
- CB does not need to match as closely as other stem cell sources
- Fewer post transplant immune complications
- Immediately available for patient in need

Family Banking

- Research has shown that a well-matched sibling is the best donor source of stem cells
- Growing scientific evidence supports future potential for regenerative medicine
- Clinical trials are studying cord blood stem cells for cellular therapy in disease conditions
- May be a more serious consideration for families with medical history, ethnic minorities, or mixed ethnicity

Common Questions

- Patients often ask about these topics:

- Cord blood does not contain embryonic stem cells
- Cord blood is rich in blood-forming cells
- Patients have options
- Collection process is completely safe for mother and baby
- Donation is not available everywhere
- Not all public cord blood units are stored
- If unit is placed on registry, no transplant information is shared (donor and recipient never meet)
- Cord blood stored in family bank cannot be transferred to public bank at this time

Delayed Cord Clamping

- Providers may prefer a short delay of 30-60 seconds
- See ACOG Committee Opinion No. 624 for details
- For public donation and family banking, do not interfere with standard-of-care for baby/mother

Public Cord Blood Collection

- Optimal volume is critical for a successful transplant
- The darker the color, the higher the volume

Cord Blood Collection

- Best practices include:
- Clamp cord as close to baby as possible
- No contamination
- Use smallest sample necessary for hospital testing
- Minimize manipulation of cord and placenta
- Allow enough time for cord to blanch
- Accurate, complete labeling

Additional Resources

- American Academy of Pediatrics official policy statement, Cord Blood Banking for Potential Future Transplantation
- American College of Obstetricians and Gynecologists (ACOG) Committee Opinion on Umbilical Cord Blood Banking, Committee Opinion on Delayed Cord Blood Clamping and FAQs about cord blood donation.
- American Medical Association ethical guidelines for physicians about umbilical cord blood
- American Society for Blood and Marrow Transplantation position statement and committee report on cord blood collection and preservation and a guide for parents
- Health Resources and Services Administration (HRSA), U.S. Department of Health and Human Services, Cord Blood Information

BE
THE MATCH"

Additional Resources

- Parents Guide to Cord Blood
- www.parentsguidecordblood.org
- To learn more about:
- Be The Match
- www.BeTheMatch.org/cord
- Cord Blood Registry:
- www.cordblood.com
- Cord Blood Registry:
- "Cord blood banking legislation"
- http://www.cordblood.com/benefits-cord-blood/umbilical-cord-blood-banking/cord-blood-banking-legislation

Cord Blood Transplantation: Past, Present \& Future

Joanne Kurtzberg, MD

CORD BLOOD TRANSPLANTATION: PAST, PRESENT, AND THE FUTURE

Why Cord Blood?

- CB contains stem and progenitor cells of blood and other lineages.
- CB is immunologically tolerant and can be transplanted without full HLA matching, increasing access to transplantation for patients lacking matched adult donors.

- 1988-1 ${ }^{\text {st }}$ Cord Blood Transplant
- MRD for Fanconi Anemia
- A\&W 27 years later

Umbilical Cord Blood Transplant History

- $1^{\text {st }}$ Transplant, France 1988 - Matched Related Donor (MRD)
- $1^{\text {st }}$ unrelated donor cord blood bank(CBB), NYBC 1992
- $1^{\text {st }}$ unrelated transplant, Duke 1993
- Netcord: Established 1997
- NMDP center for cord blood established 1999
- Now >35,000 transplants and >160 banks worldwide
- Public Inventory ~180K US, 700K worldwide
- Private Inventory $\sim 4 \mathrm{M}$ worldwide
- Legislation: CW Bill Young Cell Transplantation Program
- Coordinating centers, registry, outcomes database
- NCBI banking network
- Regulations: Guidance for FDA Licensure 10/20/2011
- Now 7 licensed CBBs in the USA
- $\sim 4-5,000$ transplants annually around the world

Cord Blood Banking

- Public - Donation for public use
- No cost to donor
- Regulated
- High standards
- Private - Saved at a $\$ \$$ for the family
- Charge to the family
- Non-Regulated
- Variable standards

Manufacturing and Administration of CBUs

- Collection
- Manufacturing
- + / - RBC, volume reduction
- Ancillary testings samples (mom and baby)
- Storage in LN or vapor
- Unit Selection
- Thawing and administration
- "To wash or not to wash"

Banking Specifications

- Banking Specifications
- >900M Total Nucleated Cell Count (TNCC)
- >1.25M viable CD34 cells
- CFU growth
- Viability >90\% (Trypan Blue)
- Negative Sterility
- Negative Donor Screening Tests and Questionnaires
- Negative hemoglobinopathy screen

Key Observations about UCBT

- Cord blood could substitute for bone marrow as a donor for Hematopoetic Stem Cell Transplant (HSCT) for all standard allogeneic indications
- Hematological malignancies, marrow failure, immunodeficiencies, hemoglobinopathies, certain inherited metabolic diseases
- Cell dose matters and single cord blood unit may be on the cusp or too small for larger individuals
- HLA matching also matters, but lesser matches can be utilized when higher cell doses are administered
- Immune reconstitution is delayed
- Graft versus Host Disease (GvHD) is decreased as compared to adult HSCT sources
- Results are comparable to MRD and MUD
- Relapse may be lower post CBT versus other HSCT sources

The Impact of Low Cell Dose in CBT

UCBT offers superior protection against relapse in adults with hematological malignancies undergoing UD HSCT

Comparison of UCB, MUD, mmMUD on DSF in 582 patients.

Milano F et al. N Engl J Med 2016;375:944953.

Patient Selection

- Malignancies

- AML
- ALL
- MDS, secondary AML
- Non Malignancies
- Metabolic
- Extent of disease progression
- Newborn screening
- Immunodeficiency diseases
- Hemoglobinopathies
- Marrow Failure

Prasad VK et al., Blood. 2008;112(7):2979-89

Non-malignant Diseases Transplanted

Adenosine Deaminase	Adrenoleukodystrophy	Alpha-mannosidosis
Autoimmune Encephalitis	Bare Lymphocyte Syndrome	Batten Disease
Chronic Granulomatous Disease	Combined Immune Deficiency Syndrome	Common Variable Immune Deficiency Disease
Chediak-Higashi Disease	Congenital Hypoplastic Anemia	Crohn's Disease
DOCK8 Deficiency	DiGeorge Syndrome	Diamond Blackfan Anemia
Dyskeratosis Congenita	Familial Erythrophagocytic Lymphohistiocytosis	Fanconi Anemia
GM1 Gangliosidosis	Glanzmann's Thrombasthenia	Hemophagocytic Lymphohistiocytosis
Hemolytic Anemia/PIEZO1	Hunter Syndrome	Hurler Scheie Syndrome
Hurler Syndrome	Hyper IGM Syndrome	Hypophosphatasia
I Cell Disease	IPEX	Kostman's Neutropenia
Krabbe Disease	Leukocyte Adhesion Deficiency	Lesch-Nyhan Syndrome
Lymphocyte Signaling Deficit	Maroteaux-Lamy Syndrome	Metachromatic Leukodystrophy
Nezelof's Syndrome	Niemann-Pick Disease Type B	Omenn's Disease
Osteopetrosis	Paroxysmal Nocturnal Hemoglobinuria	PNP Deficiency
Pelizaeus Merzbacher Disease	SCID	Sandhoff Disease
Sanfilippo Type A and B	Severe Aplastic Anemia	Shwachman-Diamond Syndrome
Sickle Cell Anemia	Sideroblastic Anemia	Tay Sachs Disease
Thalassemia Major	Wiskott-Aldrich Syndrome	ZAP70 Deficiency

Selection of CBU Graft

- Total Nucleated Cell Count (TNCC)
- $\geq 3 \times 10 \mathrm{e} 7 / \mathrm{kg}$ for malignancies
- $\geq 5 \times 10 \mathrm{e} 7 / \mathrm{kg}$ for non-malignancies
- Per BMT-CTN 0501, 1 CBU is optimal
- CD34 (bank dependent)
- $\geq 2 \times 10 \mathrm{e} 5 / \mathrm{kg}$
- HLA match
- No more than 1 MM at each loci
- A, B, DRB1 and C (if possible)
- Match DRB1 over class I

Prior to Start of Conditioning Therapy

- Complete workup
- Control infections
- Obtain informed consent
- Confirm donor and ship CBU to TC
- Place central line
- Consider G-tube (metabolic patients)
- Simulate for TBI (if indicated)

Selection and Administration of CBU

- For Metabolic diagnoses
- Screen for carrier state in donor
- Test enzyme level
- Make sure a full match is not autologous CB
- Favor accredited banks
- Favor RBC depleted CBUs
- Bank should have a release assay (on a segment) for potency
- Thaw and wash CBU before administration

Conditioning

- Total body irradiation (TBI)

- For Heme Malignancies
- Flu/Cy/TBI
- Some centers use Bu based regimens for AML
- Non-TBI
- Bu/Cy or other Bu based regimen
- Obtain busulfan PK
- +/- ATG
- Use MAC not RIC

Leukemia-free Survival
Adjusted for disease status, CMV serostatus, age

GvHD prophylaxis

- Cyclosporine (CYA)
- Tacrolimus (FK)
- Mycophenolic acid (MMF)
- Steroids
- Antithymocyte Globulin (ATG)
- CYA or FK/MMF
- MMF to 45-60 days
- CYA or FK to 9 months, then taper

Supportive Care

- Nutrition support
- TPN or enteral
- IVF
- IVIG
- G-CSF
- Anti virals, antifungals until CD4 >200/uL
- Monitoring (CMV, Adeno, HHV-6, EBV)
- Granulocytes
- Parental, G-mobilized, irradiated

Engraftment Syndrome and GvHD

- Engraftment Syndrome (fever, erythroderma)
- Short steroid pulse
- Load $2 \mathrm{mg} / \mathrm{kg}$, then $1 \mathrm{mg} / \mathrm{kg}$ q12h x 3days, then taper over 5-10 days
- Acute GvHD
- Steroids
- Change from CYA to FK or reverse or MSCs if available
- $2^{\text {nd }}$ or $3^{\text {rd }}$ line agents
- Chronic GvHD

Long Term Follow-Up - Late effects

- Skeletal Growth
- Gonadal Failure
- Thyroid
- Hypo/hyper/Ca
- Osteoporosis
- Cardiac function
- Pulmonary function
- Dentition

Teeth of an 8 year old child who was conditioned with BuCyATG in the first month of life.

- Cognitive

Expanded Cord Blood Product for BMT

Cord Blood Cells Expanded in Nicotinamide

Expanded Cord Blood (CB) Product Rapid Engraftment Shortens Hospitalization

Avg. hospitalization days

- Patients engrafted with expanded CB product: 23.5 (Day 14 post transplant discharge)
- Patients engrafted with the UM CBU: 40 (Day 31 post transplant discharge)
- Duke control cohort ($n=17$) average 36 (Day 24 post transplant discharge)

Rapid PB WBC Reconstitution in Patients Engrafted with Expanded CB product

The first SCD patient transplanted with Expanded CB Product

Diseases Treated (N=>350)
 Median follow-up 10.3 years

- Krabbe Disease
- Metachromatic Leukodystrophy
- Adrenoleukodystrophy
- Mucopolysaccharidoses
- Hurler, Hunter, Sanfilippo
- Neimann Pick Disease
- Maroteau Lamy
- PMD
- Batten Disease
- Others

Prasad VK et al., Blood. 2008;112(7):2979-89

- Unrelated cord blood donor
- Myeloablative chemotherapy
- Average 56 day hospitalization
- 12-18 month recovery
- Risk of GvHD and TRM

MA chemotherapy is required for engraftment

Two Brothers Transplanted for Late Infantile Krabbe Disease

UCBT age 11 months

UCBT age 2.5 months

Autologous UCB Trials at Duke

- Safety

- Cryopreserved UCB, 184 patients
- Sun et al, Transfusion, 2010
- HIE Study "Babybac"
- Fresh, VR, RR, UCB
- Cotten et al, J Peds, 2014
- Congenital Hydrocephalus
- Multiple doses of auto UCB
- Sun et al, Pediatric Research, 2015
- HLHS/ECMO
- Fresh and cryopreserved
- CP
- Cryopreserved
- Autism
- Cryopreserved
- 25 patient safety/endpoint finding study in progress

Allogeneic Cord Derived Therapies

Ongoing:
DUOC-01
Acute Stroke in Adults
Non HLA Matched
ABO/Rh matched
Race matched
3 sites
10 patients treated
Sibling CP
15 patients treated
Planned:
Best donor Autism Phase II
Allogeneic CP Phase II
Cord Tissue MSCs Autism Phase I
MSC versus CB Autism Phase II

Feasibility of Autologous Cord Blood Cells for Infants with Hypoxic-Ischemic Encephalopathy

C. Michael Cotten, MD ${ }^{1}$, Amy P. Murtha, MD 2, Ronald N. Goldberg, MD 1, Chad A. Grotegut, MD ${ }^{2}$, P. Brian Smith, MD ${ }^{1}$, Ricki F. Goldstein, MD ${ }^{1}$, Kimberley A. Fisher, PhD ${ }^{1}$, Kathryn E. Gustafson, PhD ${ }^{3}$, Barbara Waters-Pick, BS, MT(ASCP) ${ }^{4}$, Geeta K. Swamy, MD ${ }^{2}$, Benjamin Rattray, MD^{1}, Siddhartha Tan, MD^{5}, and Joanne Kurtzberg, MD^{6}
'J Pediatr 2014;164:973-9).

Survival with 1 year Bayley III scores > 85 in 3 domains

	Cells $\mathrm{N}=28$ $\mathrm{~N}(\%)$	Cooled only $\mathrm{N}=66$ $\mathrm{~N}(\%)$	p
Survival with all 3 Bayley domain	$18(64)$	$25(38)$	0.04
scores ≥ 85	$9(35)$	$23(48 \%)$	0.33
Bayley <85 at one year (among survivors)*			

Next: Multi-center Randomized, placebo controlled, Phase II study 120-160 babies
10 centers

CP-AC: Observed - Expected Change
 - ≥ 2 year olds ($n=38$)

In Summary

- The CB journey is 27 years young
- CB increases access to HSCT for patients lacking matched donors
- Cord Blood Preparedness:
- Emerging cell engineering technology promised to reduce TRM and further improve outcomes
- Expertise in UCBT will improve outcomes
- Emerging applications in cell expansion and regenerative medicine offer promising therapy for babies and children with unmet medical needs

