Case studies: Applying 2012 HLA matching guidelines for HCT selection

Dennis Confer, MD
Chief Medical Officer, NMDP
October 17, 2012

Learning Objectives

At the conclusion of the program, the participants should be able to:

- Select pre- and post-transplant HLA and non-HLA factors that impact hematopoietic cell transplantation (HCT) transplant outcomes for patients.
- Apply new matching criteria guidelines and research to identify optimal donors or cord blood units for patients in need of HCT.
- Review/evaluate the impact of matching criteria search limitations that may eliminate identification of viable donor and cord blood unit selections and delay transplant.

Financial Disclosure

The following in control of content had no relevant financial relationships to disclose.

•	Dennis (Confer.	. MD
			,

- Darlene Haven
- Ellyce Hayes, RD
- Mary Horowitz, MD
- Craig Malmberg, CHS
- Michelle Setterholm, CHS
- Stephen Spellman, MS

Presenter

Planning Committee

Planning Committee

Planning Committee

Planning Committee

Planning Committee

Planning Committee

Outline

- 2 case studies
 - 1: Best adult donor match = 9/10
 - 2: Cord blood unit (CBU) may be best transplant option
- Within each case
 - Polling questions: practice applying the guidelines!
 - Data highlights
- Q & A, time allowing

Recent Update to Matching Guidelines

doi:10.1182/blood-2012-03-379032

A perspective on the selection of unrelated donors and cord blood units for transplantation

Stephen R. Spellman, Mary Eapen, Brent R. Logan, Carlheinz Mueller, Pablo Rubinstein, Michelle I. Setterholm, Ann E. Woolfrey, Mary M. Horowitz, Dennis L. Confer and Carolyn K. Hurley

Spellman SR, et al. *Blood* (2012); 120:259-265

Factors that Affect Transplant Outcomes

Pre-transplant

- HLA matching
- Patient CMV seropositivity
- Performance score
- Disease
- Disease status
- Graft cell dose

Post-transplant

- Infections
- aGVHD and cGVHD
- Organ toxicity
- Recurrent/2nd
 malignant neoplasms

Notes on Case Presentation

- NMDP's Traxis[®] system with HapLogic[™] algorithm
- Screen shots only
 - Mock patients
 - HLA from actual cases
- Traxis navigation and HapLogic III questions/training
 - https://network.bethematchclinical.org/Transplant-Centers/Search-and-Testing/Search-Tools/Traxis

Case 1

- Patient in complete 1st remission
 - Early disease stage

Case 1 Patient Typing

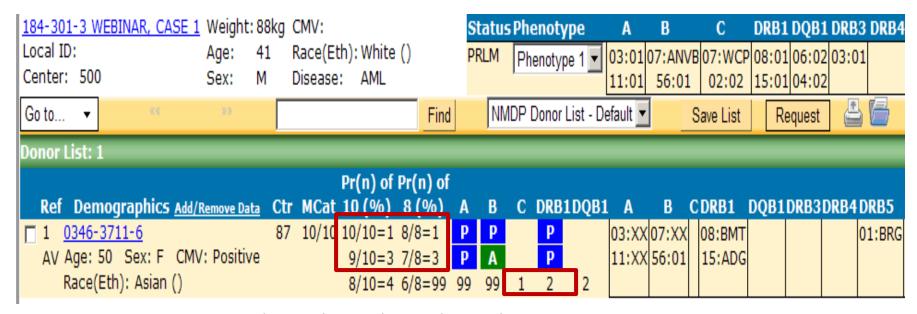
Status	Phenotype	Α	В	C	DRB1	DQB1	DRB3	DRB4	DRB5
PRLM	Phenotype 1 ▼	03:01	07:ANVB	07:WCF	08:01	06:02	03:01		01:01
		11:01	56:01	02:02	15:01	04:02			

07:ANVB = 07:02/07:61; C*07:WCP = 07:02/07:50

- HLA search strategist comments
 - B*56:01-C*02:02 is an uncommon association; B*56:01 more commonly associates with C*01:02
 - C mismatch is likely in all B matched donors

NMDP Donor Overview

Summa	ary Cou	ınts	Search	results	as of:	: Oct 03 2012	2
	_						
Vie	w Donor	Selec	tions				
	10 Allele		8 A	llele		AB Only	
Donor:	10/10	ABCI	ORDQ	Total:	1		
Select	Row	Misı	match	C	ount		
	1	Non	e	1			
Donor:	9/10 A	BCDI	RDQ	Total:	818		
	2	HLA	- A	1	.53		
	3	HLA	-B	4	-03		
	4	HLA:	-C	1	.8		
	5	HLA:	-DRB1	2	43		
	6	HLA	-DQB1	1			


BMDW Donor Overview

BMDW	Summa	ary Co	unts	Search	result	s as of:	Oct	03 2
Vie	w Donor	Selecti	ons					
	10 Allele		8.4	llele		AB Only		
Donor:	10/10	ABCD	RDQ	Total:	5			
Select	Row	Mism	natch		Count			
	1	None		5	;			
Donor:	9/10 A	BCDR	DQ	Total:	1677	_	_	
	2	HLA-	Д	3	339			\Box
	3	HLA-I	В	7	792			
	4	HLA-	С	2	25			
	5	HLA-I	DRB1	5	520			
	6	HLA-	DQB1	1	Ļ			

NMDP Potential 10/10 Donor

DRB1*08:BMT = 08:01/08:03/08:06/08:10/08:16/08:17

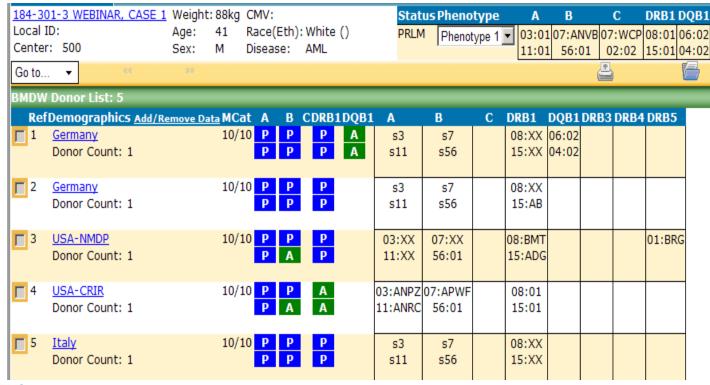
DRB1*15:ADG = 15:01/15:02/15:03/15:04/15:05/15:06/16:01/16:03/16:04/16:05/16:07

DRB5*01:BRG = 01:01/01:04/01:05/01:07/01:09

Could screen DRB1 and C, mismatches likely

BMDW Potential 10/10 Donors

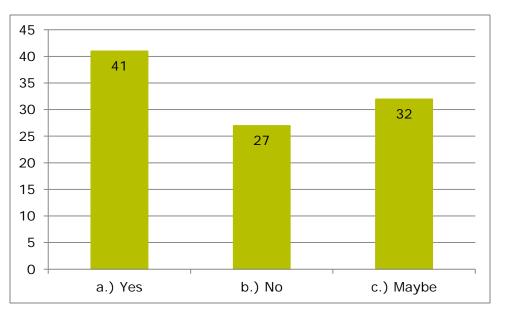
184-30 Local I	01-3 WEBINAR, CASE 1	_	_		. M/Lib. ()		us Pheno		Α	В		С	DRB1 D	
	r: 500	Age: Sex:		ace(Etn) isease:	: White () AML	PRLN	¹ Phenot	type 1		1 07:Al 1 56:	NVB 07 01 0	:WCP 2:02	08:01 0 15:01 0	6:0 4:0
Go to	. ▼	99									4		(3
BMDW	Donor List: 5													
Ref	Demographics <u>Add/R</u>	emove Da			CDRB1DQB1	A	В	С	DRB1			DRB4	DRB5	
1	Germany Donor Count: 1		10/10	P P	P A P A	s3 s11	s7 s56		08:XX 15:XX	I	l I			
2	Germany Donor Count: 1		10/10	P P	P	s3 s11	s7 s56		08:XX 15:AB					•
3	USA-NMDP Donor Count: 1		10/10	P P	P	03:XX 11:XX	07:XX 56:01		08:BMT 15:ADG	I			01:BRG	
 4	USA-CRIR Donor Count: 1		10/10	P P	A	03:ANPZ 11:ANRC	07:APWF 56:01		08:01 15:01					
5	Italy Donor Count: 1		10/10	P P	P	s3 s11	s7 s56		08:XX 15:XX					



Poll: Question 1

Though unlikely to match, would you consider spending this patient's time and available resources to screen potential 10/10 donors at C and/or DRB1?

- a.) Yes
- b.) No
- c.) Maybe



Poll: Question 1 (RESULTS)

Though unlikely to match, would you consider spending this patient's time and available resources to screen potential 10/10 donors at C and/or DRB1?

- a.) Yes
- b.) No
- c.) Maybe

Correct Answer – b.) No

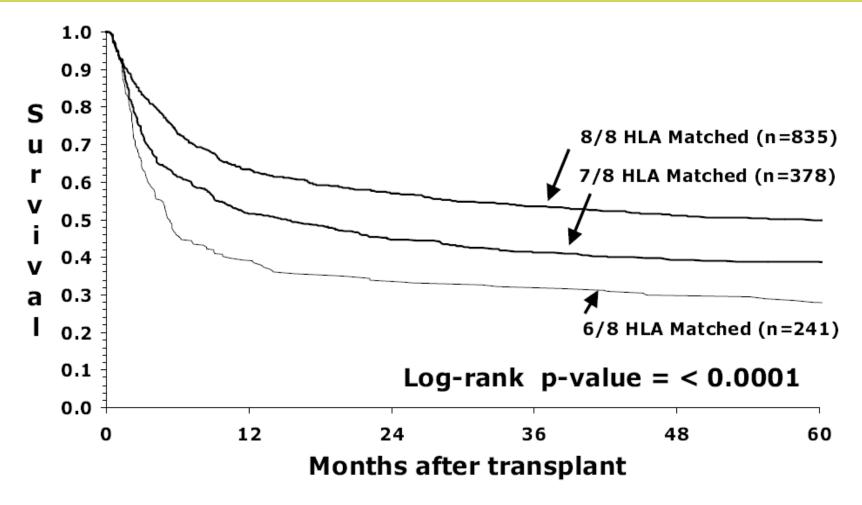
Lee Study

2007 110: 4576-4583 Prepublished online September 4, 2007;

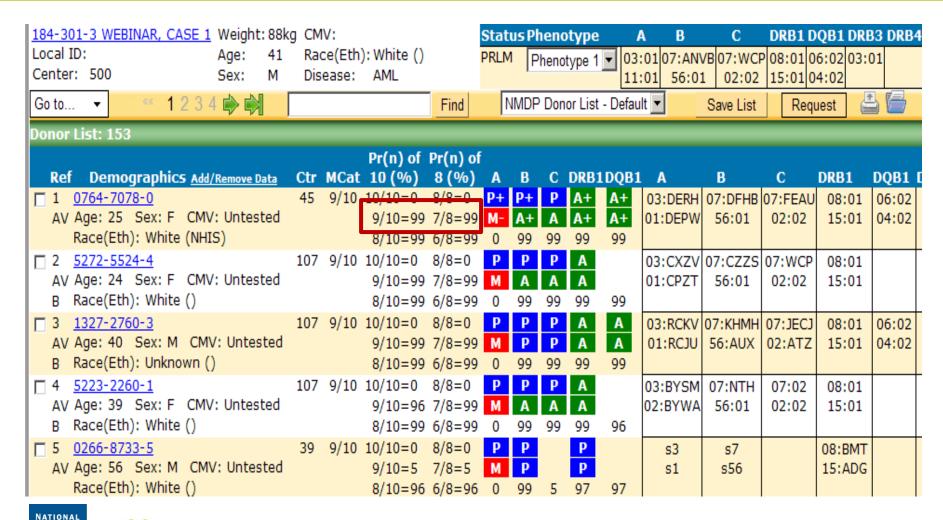
doi:10.1182/blood-2007-06-097386

High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation

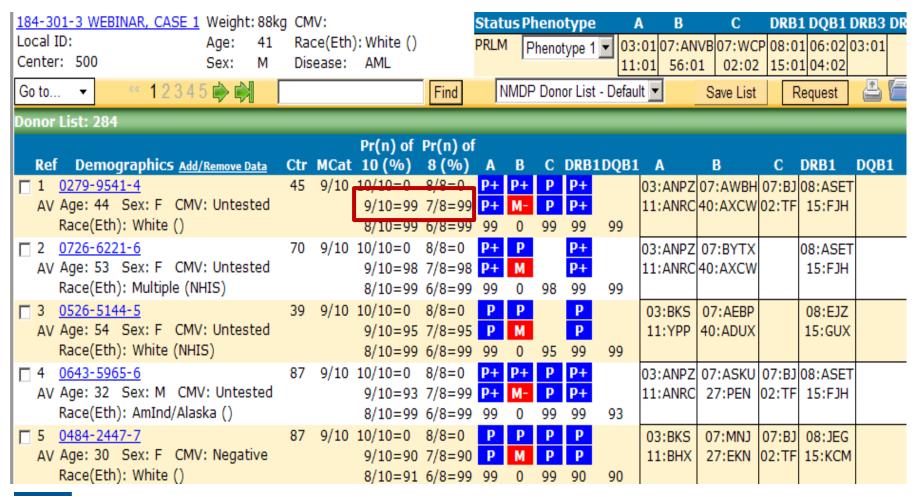
Stephanie J. Lee, John Klein, Michael Haagenson, Lee Ann Baxter-Lowe, Dennis L. Confer, Mary Eapen, Marcelo Fernandez-Vina, Neal Flomenberg, Mary Horowitz, Carolyn K. Hurley, Harriet Noreen, Machteld Oudshoorn, Effie Petersdorf, Michelle Setterholm, Stephen Spellman, Daniel Weisdorf, Thomas M. Williams and Claudio Anasetti

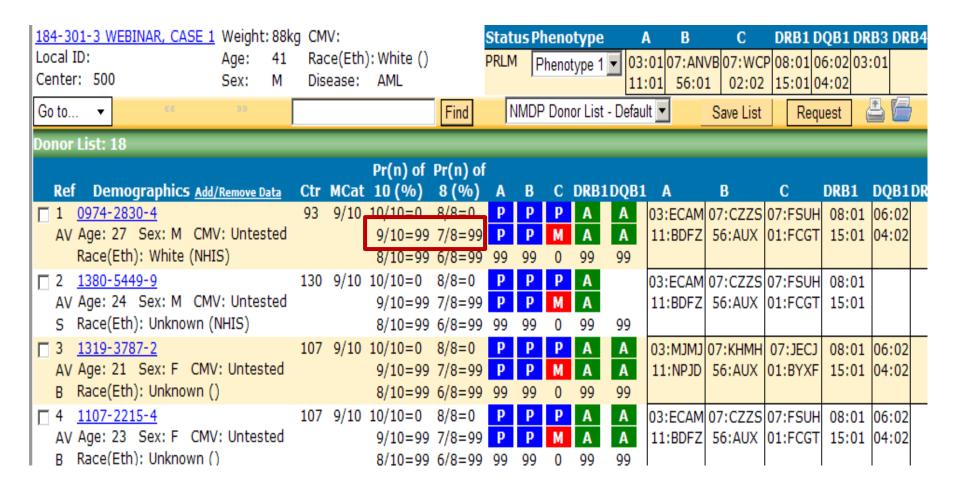

Lee S, et al. *Blood* (2007); 110:4576-83

Early stage disease



Lee SJ, et al. *Blood (*2007); 110:4576-4583


Likely 9/10 A Mismatches


Likely 9/10 B Mismatches

Likely 9/10 C Mismatches

Poll: Question 2

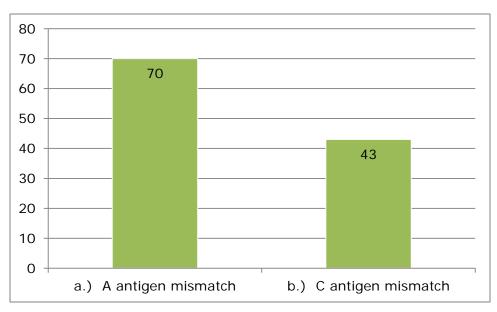
Which mismatch would you choose for PBSC donation?

- a.) A antigen mismatch

			Pr(n) of	Pr(n) of										
Demographics Add/Remove Data	Ctr	MCat	10 (%)	8 (%)	A	В	C	DRB1	DQB1	A	В	C	DRB1	DQB1
<u>0764-7078-0</u>	45	9/10	10/10=0	8/8=0	P+	P+	P	A+	A+	03:DERH	07:DFHB	07:FEAU	08:01	06:02
Age: 25 Sex: F CMV: Untested			9/10=99	7/8=99	M-	A+	A	A+	A+	01:DEPW	56:01	02:02	15:01	04:02
Race(Eth): White (NHIS)			8/10=99											

b.) C antigen mismatch

<u>0974-2830-4</u>	93	9/10 10/10=0											
Age: 27 Sex: M CMV: Untested		9/10=99	7/8=99	P	P	M	A	A	11:BDFZ	56:AUX	01:FCGT	15:01	04:02
Race(Eth): White (NHIS)		8/10=99	6/8=99	99	99	0	99	99					



Poll: Question 2 (RESULTS)

Which mismatch would you choose for PBSC donation?

- a.) A antigen mismatch
- b.) C antigen mismatch

Correct Answer – a.) A antigen mismatch

HLA-C Antigen Mismatch Is Associated with Worse Outcome in Unrelated Donor Peripheral Blood Stem Cell Transplantation

Ann Woolfrey, ¹ John P. Klein, ² Michael Haagenson, ³ Stephen Spellman, ⁴ Effie Petersdorf, ¹ Machteld Oudshoorn, ⁵ James Gajewski, ⁶ Gregory A. Hale, ⁷ John Horan, ⁸ Minoo Battiwalla, ⁹ Susana R. Marino, ¹⁰ Michelle Setterholm, ⁴ Olle Ringden, ¹¹ Carolyn Hurley, ¹² Neal Flomenberg, ¹³ Claudio Anasetti, ¹⁴ Marcelo Fernandez-Vina, ¹⁵ Stephanie J. Lee¹

Woolfrey A, et al. Biol Blood Marrow Transplant (2011);17:885-892

Locus-Specific Analysis — Mortality

	N	RR	95% CI	p value
8/8 match	1243	1.00		
A allele MM	51	1.16	0.80-1.67	0.43
A antigen MM	85	1.17	0.88-1.55	0.29
B allele MM	57	1.29	0.92-1.28	0.14
B antigen MM	16	1.01	0.50-2.04	0.97
C allele MM	61	0.82	0.57-1.19	0.30
C antigen MM	187	1.41	1.16-1.70	0.0005
DRB1 MM	39	1.30	0.87-1.94	0.20
C allele vs. antigen		0.58	0.39-0.88	0.009

C antigen mismatch increases risk for mortality, DFS, TRM & GVHD III-IV

Can't avoid C antigen mismatch?

- Further Lee and Woolfrey data analysis
- No significant advantage to using marrow over PBSC as graft source with isolated C antigen mismatch

Poll: Question 3

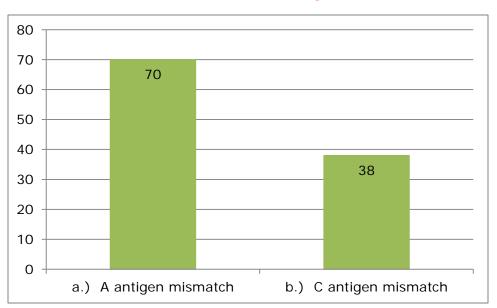
Which mismatch would you choose for marrow donation?

a.) A antigen mismatch

	Pr(n) of Pr(n) of														
i	Demographics Add/Remove Data														
	<u>0764-7078-0</u>	45	9/10	10/10=0	8/8=0	P+	P+	P	A+	A+	03:DERH	07:DFHB	07:FEAU	08:01	06:02
	Age: 25 Sex: F CMV: Untested			9/10=99	7/8=99	M-	A+	A	A+	A+	01:DEPW	56:01	02:02	15:01	04:02
	Race(Eth): White (NHIS)			8/10=99						99					

b.) C antigen mismatch

<u>0974-2830-4</u>	93	9/10 10/10=0											
Age: 27 Sex: M CMV: Untested		9/10=99	7/8=99	P	P	M	A	A	11:BDFZ	56:AUX	01:FCGT	15:01	04:02
Race(Eth): White (NHIS)		8/10=99	6/8=99	99	99	0	99	99					



Poll: Question 3 (RESULTS)

Which mismatch would you choose for marrow donation?

- a.) A antigen mismatch
- b.) C antigen mismatch

Correct Answer – b.) C antigen mismatch

Specific Single Locus Mismatches

Considering 8/8 as "fully matched"

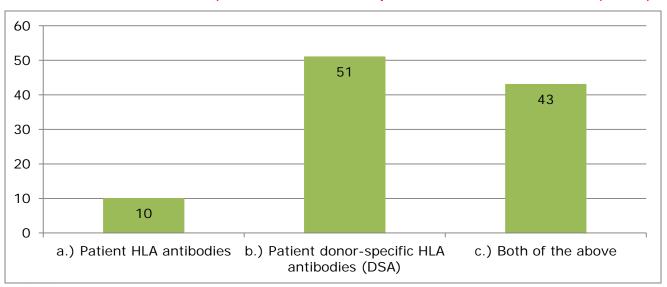
	Su	ırvival		TRM	Acute GVHD			
	RR	р	RR	р	RR	р		
8/8	1.00		1.00		1.00			
A MM	1.36	<0.0001	1.47	<0.0001	1.57	<0.0001		
В ММ	1.16	0.20	1.32	0.03	1.63	0.001		
C MM	1.19	0.006	1.32	0.0002	1.43	<0.0001		
DR MM	1.48	0.0005	1.56	0.0007	1.27	0.16		

Survival: Mismatch at A or DRB1 vs. B or C, RR 1.18 (1.10-1.38), p=0.04

Poll: Question 4

You've identified an optimal 9/10 donor and a backup donor. What antibody specificities would you consider?

- a.) Patient HLA antibodies
- b.) Patient donor-specific HLA antibodies (DSA)
- c.) Both of the above



Poll: Question 4 (RESULTS)

You've identified an optimal 9/10 donor and a backup donor. What antibody specificities would you consider?

- a.) Patient HLA antibodies
- b.) Patient donor-specific HLA antibodies (DSA)
- c.) Both of the above

Correct Answer – b.) Patient donor-specific HLA antibodies (DSA)

2010 115: 2704-2708 Prepublished online January 20, 2010;

doi:10.1182/blood-2009-09-244525

The detection of donor-directed, HLA-specific alloantibodies in recipients of unrelated hematopoietic cell transplantation is predictive of graft failure

Stephen Spellman, Robert Bray, Sandra Rosen-Bronson, Michael Haagenson, John Klein, Susan Flesch, Cynthia Vierra-Green and Claudio Anasetti

Spellman S, et al. *Blood* (2010);115:2704-2708

Study Conclusions

- Approximately 35% of patients receiving unrelated stem cell transplants possess HLA antibodies
- The presence of donor-specific HLA antibodies associates with graft failure
- HLA antibody evaluations should be part of the routine workup for unrelated stem cell transplantation

Poll: Question 5

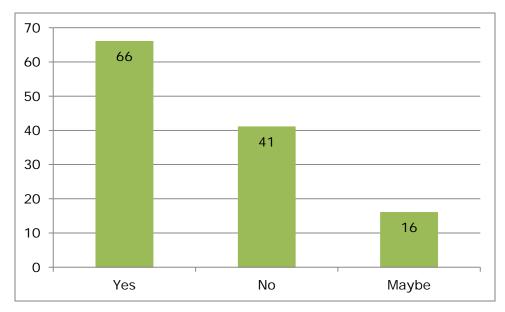
You've identified 3-5 optimal 9/10 donors

Tests show no evidence of patient DSA

Would you consider typing patients/donors at DPB1?

- a.) Yes
- b.) No
- c.) Maybe

Poll: Question 5


You've identified 3-5 optimal 9/10 donors

Tests show no evidence of patient DSA

Would you consider typing patients/donors at DPB1?

- a.) Yes
- b.) No
- c.) Maybe

Correct Answer – c.) Maybe

Newer DPB1 Data

Trecipients Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study

Katharina Fleischhauer*, Bronwen E Shaw*, Theodore Gooley, Mari Malkki, Peter Bardy, Jean-Denis Bignon, Valérie Dubois, Mary M Horowitz, J Alejandro Madrigal, Yasuo Morishima, Machteld Oudshoorn, Olle Ringden, Stephen Spellman, Andrea Velardi, Elisabetta Zino, Effie W Petersdorf, on behalf of the International Histocompatibility Working Group in Hematopoietic Cell Transplantation

Fleischhauer K, et al. Lancet Oncol (2012); 13:366-374

DPB1 Permissive Mismatches May Benefit 9 of 10 Matched Transplant

	HLA 10/10 match, non-permissive DPB1 mismatch (n=1654)	HLA 9/10 match, permissive DPB1 mismatch (n=1595)		HLA 9/10 match, DPB1 mat (n=500)		
		HR or OR	p value	HR or OR	p value	
Overall mortality	1 (ref)	1.04 (0.94-1.14)	0.39	1.02 (0.89-1.18)	0.70	
Non-relapse mortality	1 (ref)	1.01 (0.90-1.13)	0.81	1.00 (0.84-1.19)	0.98	
Relapse*	1 (ref)	1.12 (0.96-1.31)	0.14	1.16 (0.92-1.45)	0.19	
Grade 3–4 aGvHD	1 (ref)	1.00 (0.84–1.19) 0.97		0.93 (0.72–1.21) 0.6		

DPB1 Non-Permissive Mismatches May be Detrimental to 9 of 10 Matched Transplant

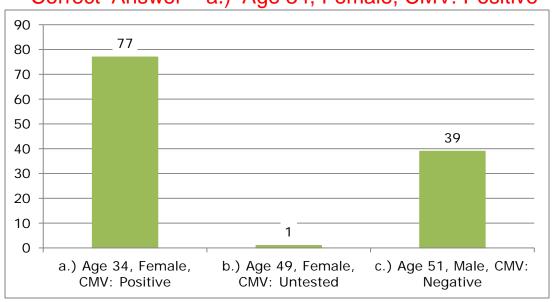
	HLA 10/10 match, non-permissive DPB1 mismatch (n=1654)	HLA 9/10 match, non- permissive DPB1 mismatch (n=1001)		
		HR or OR	p value	
Overall mortality	1 (ref)	1.13 (1.02-1.26)	0.01	
Non-relapse mortality	1 (ref)	1.19 (1.05-1.35)	0.006	
Relapse*	1 (ref)	1.04 (0.87-1.24)	0.64	
Grade 3–4 aGvHD	1 (ref)	1.36 (1.13-1.65)	0.001	

Is a DPB1 Mismatch Permissive?

- European Bioinformatics Institute (EBI) website
 - DPB1 T-Cell Epitope Algorithm
 - http://www.ebi.ac.uk/imgt/hla/dpb.html

Poll: Question 6

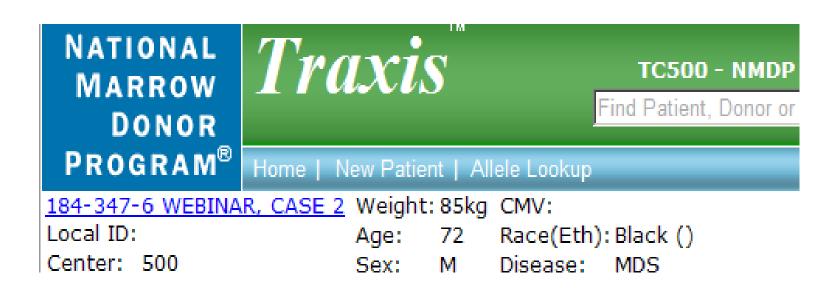
Assume this 41 y/o M patient is CMV positive. If each donor is equally matched, which would you choose?



Poll: Question 6 (RESULTS)

Assume this 41 y/o M patient is CMV positive. If each donor is equally matched, which would you choose?

- a.) Age 34, Female, CMV: Positive
- b.) Age 49, Female, CMV: Untested
- c.) Age 51, Male, CMV: Negative


Correct Answer – a.) Age 34, Female, CMV: Positive

Case 2

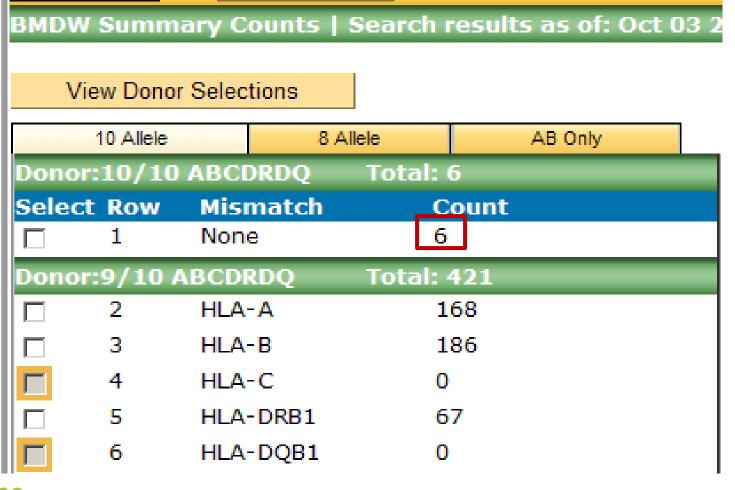
- MDS, not otherwise classified
 - Advanced phase disease

Case 2 Patient Typing

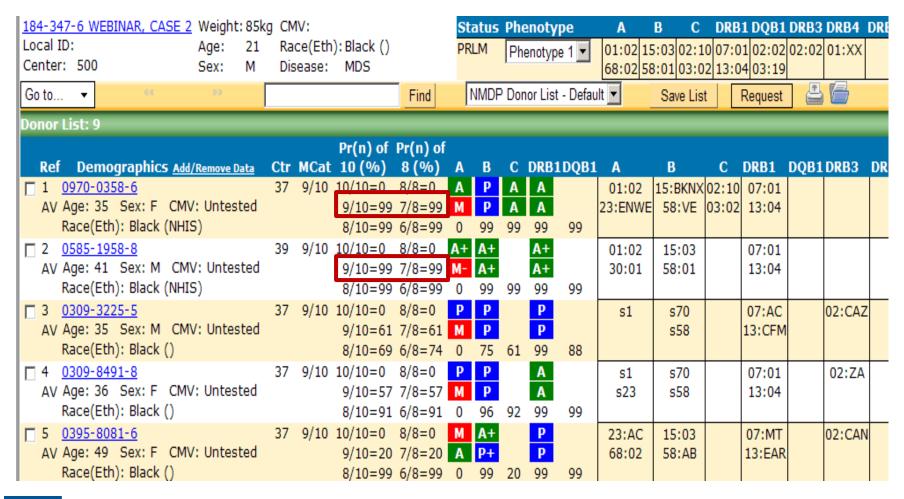
	Phenotype	Α	В			-		DRB4	
PRLM	Phenotype 1 ▼	01:02	15:03	02:10	07:01	02:02	02:02	01:XX	
		68:02	58:01	03:02	13:04	03:19			

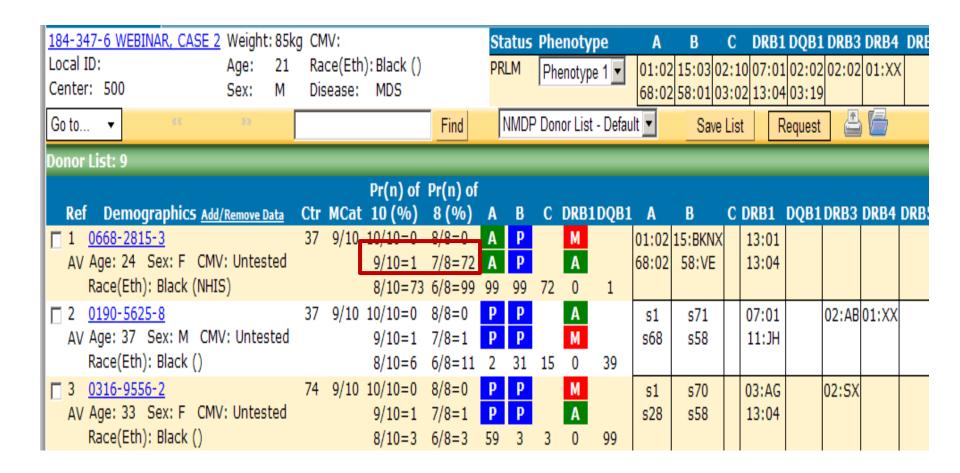
- HLA search strategist comments
 - Other A*01, A*68, B*15, and DRB1*13 alleles may be common in donor haplotypes
 - B*58:01 commonly associates with either C*03:02 or C*07:01
 - DQB1*03:01 and DQB1*03:19 are Antigen Recognition Site (ARS) identical alleles

NMDP Donor Overview

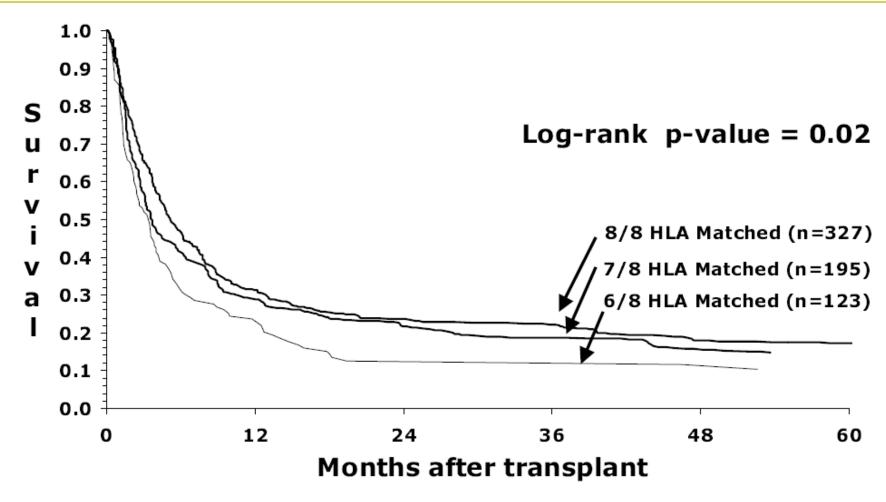

Summary Counts Search results as of: Oct 03 2012										
	_									
View Donor Selections										
10 Allele 8 All			Allele		AB Only					
Donor	:10/10) ABCE	RDQ	Total:	0					
Select	Row	Misr	natch	C	ount					
	1	None	3	0						
Donor	:9/10	ABCDR	RDQ	Total:	36					
	2	HLA-	·A	9						
	3	HLA-	·B	18						
	4	HLA-	·C	0						
	5	HLA-	DRB1	9						
	6	HLA-	DQB1	0						

BMDW Donor Overview


Potential 7/8 B Mismatches Unlikely


Likely 7/8 A Mismatches

Possible 7/8 DRB1 Mismatch



Can your TC be Flexible?

- Some TC protocols may specify no A or DRB1
 mismatches allowed, but HLA experts say these are the
 likely best matched donors that can be identified for this
 patient
- Need to be flexible enough on both criteria and graft source to ensure:
 - The optimal HLA match can be selected

Advanced stage disease

Lee SJ, et al. *Blood*.2007;110(13):4576-4583.10

Lee Advanced Disease Statements

- In most instances, the adverse consequences of using an HLA mismatched donor are less serious than proceeding to HCT with more advanced disease and may still offer better outcomes than other available treatments
- Expeditious transplantation with the best available donor, even if mismatched, may offer the best chance for survival

Lee, S.J. et al. *Blood* (2007);110: 4576-4583

Expedite Transplant for Advanced Disease

 Test patient for HLA antibodies early, to select mismatches with no DSA

 Select donors likely to remain > 7/8 matched after CT

Can usually move more quickly with CBU

Poll: Question 7

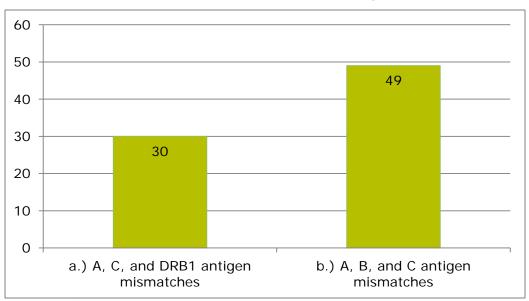
Let's assume units below have nearly identical cell dose. Which 4/6 CBU might be preferable?

a.) A, C, and DRB1 antigen mismatches

Pr(n) Pr(n) of Pr(n) of													
Demographics Add/Remove Data	MCat 10 (%)	8 (%)	6 (%)	A	В	C	DRB1	DQB1	A	В	C	DRB1	DQB1
9812-9796-4 TNC/kg: 6.38	4/6 10/10=0	8/8=0	6/6=0	М	P	Α	Α		23:CJT	15:MJMN	02:10	07:01	
CT: Y Sex: F CD34/kg: 0.16	9/10=0	7/8=0	5/6=0	Α	P	М	М		68:02	58:VE	07:WTR	11:01	
UNL Race(Eth): Multiple (NHIS)	8/10=0	6/8=0	4/6=99	0	99	0	0	53					

b.) A, B, and C antigen mismatches

```
9976-7456-0 TNC/kg: 6.31 4/6 10/10=0 8/8=0 6/6=0 M P P A 03:EKPR 15:BPXE 02:DZVJ 07:01 CT: Y Sex: M CD34/kg: 0.13 9/10=0 7/8=0 5/6=0 L M M A 68:WPA 18:EJXK 05:CPPZ 13:04 UNL Race(Eth): Black (NHIS) 8/10=0 6/8=0 4/6=0 0 0 0 99 99
```

Poll: Question 7 (RESULTS)

Let's assume units below have nearly identical cell dose. Which 4/6 CBU might be preferable?

- a) A, C, and DRB1 antigen mismatches
- b) A, B, and C antigen mismatches

Correct Answer – b.) A, B, and C antigen mismatches

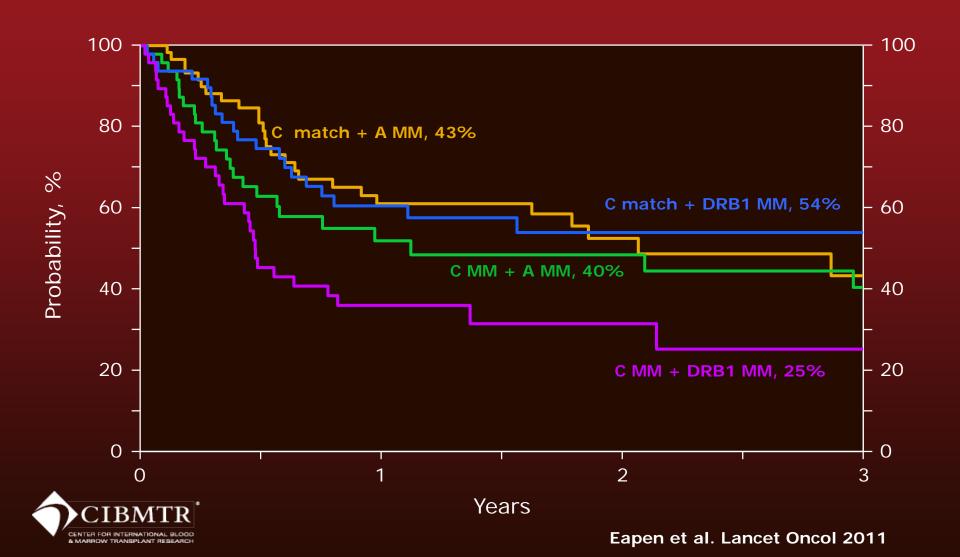
8/8 Matching in CBU Outcomes

• Effect of donor-recipient HLA matching at HLA A, B, C, and

• Output

• Description of the complex of the DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis

> Mary Eapen, John P Klein, Guillermo F Sanz, Stephen Spellman, Annalisa Ruggeri, Claudio Anasetti, Maria Brown, Richard E Champlin, Joan Garcia-Lopez, Gareth Hattersely, Gesine Koegler, Mary J Laughlin, Gerard Michel, Samir K Nabhan, Franklin O Smith, Mary M Horowitz, Eliane Gluckman, Vanderson Rocha, for the Eurocord-European Group for Blood and Marrow Transplantation, Netcord, and the Center for International Blood and Marrow Transplant Research


Eapen M, et al. *Lancet Oncol* (2011); 12:1214-21

Overall Survival

- Mismatch at HLA-C + HLA A or DRB1 -

Consider NIMA Matching?

- Non-inherited maternal antigen (NIMA) matches are relatively rare
- Relative frequency of the mismatched antigen(s) will strongly influence the ability to find a NIMA match
- Searching for NIMA match may delay transplant
 - Patient 2 has MDS, advanced stage disease

LOTS of Info!

- Encourage review of:
 - Matching guidelines paper
 - Studies cited in matching guidelines manuscript
 - Webinar slides

Webinar Slides Online

 Update to Matching Guidelines webinar now available online:

https://network.bethematchclinical.org/ Education/Transplant-Center/HLA-and-Search-Strategy/HLA-Matching-Guidelines/

Acknowledgments

- CIBMTR is supported by, among others:
 - Public Health Service Grant/Cooperative Agreement U24-CA76518 from the:
 - National Cancer Institute
 - National Heart, Lung and Blood Institute
 - National Institute of Allergy and Infectious Diseases
 - Contract HHSH234200637015C with Health Resources and Services Administration (HRSA/DHHS)
- NMDP is supported by, among others:
 - Two grants, N00014-10-1-0204 and N00014-1-1-0339,
 from the Office of Naval Research

Q & A

- Please continue to listen to the informative Q & A session
- If you have any questions after listening to this recorded webinar, please contact <u>search-strategies@nmdp.org</u>

